7 research outputs found

    A fault diagnosis framework for centrifugal pumps by scalogram-based imaging and deep learning.

    Get PDF
    Centrifugal pumps are the most vital part of any process industry. A fault in centrifugal pump can affect imperative industrial processes. To ensure reliable operation of the centrifugal pump, this paper proposes a novel automated health state diagnosis framework for centrifugal pump that combines a signal to time-frequency imaging technique and an Adaptive Deep Convolution Neural Network model (ADCNN). First, the vibration signals corresponding to different health conditions of the centrifugal pump are acquired. Vibration signals obtained from the centrifugal pump carry a great deal of information and generally, statistical features are extracted from the vibration signals to retain meaningful fault information. However, these features are either insensitive to weak incipient faults or unsuitable for tracking severe faults, thus, decreasing the fault classification accuracy. To tackle this problem, a signal to time-frequency imaging technique is applied to the pump vibration signals. For this purpose, Continuous Wavelet Transform (CWT) is applied to decompose the vibration signals over different time-frequency scales and extract the pump fault information in both the time and frequency domains. The CWT scales form two-dimensional time-frequency images commonly referred to as scalograms. The CWT scalograms are then converted into grayscale images (SGI). Over the past few decades, CNN models have been established as an effective practice to process images for classification and pattern recognition. Consequently, the extracted CWTSGIs are finally provided as inputs to the proposed ADCNN architecture to achieve feature extraction and classification for centrifugal pump faults. The performance of the proposed diagnostic framework (CWTSGI + ADCNN) is validated with a vibration dataset collected from a testbed specifically designed for centrifugal pump diagnosis. The experimental results suggest that the proposed technique based on CWTSGI and ADCNN outperformed existing methods with an average performance improvement of 4.7 - 15.6%

    A novel pipeline leak detection technique based on acoustic emission features and two-sample Kolmogorov–Smirnov test.

    Get PDF
    Pipeline leakage remains a challenge in various industries. Acoustic emission (AE) technology has recently shown great potential for leak diagnosis. Many AE features, such as root mean square (RMS), peak value, standard deviation, mean value, and entropy, have been suggested to detect leaks. However, background noise in AE signals makes these features ineffective. The present paper proposes a pipeline leak detection technique based on acoustic emission event (AEE) features and a Kolmogorov–Smirnov (KS) test. The AEE features, namely, peak amplitude, energy, rise-time, decay time, and counts, are inherent properties of AE signals and therefore more suitable for recognizing leak attributes. Surprisingly, the AEE features have received negligible attention. According to the proposed technique, the AEE features are first extracted from the AE signals. For this purpose, a sliding window was used with an adaptive threshold so that the properties of both burst- and continuous-type emissions can be retained. The AEE features form distribution that change its shape when the pipeline condition changes from normal to leakage. The AEE feature distributions for leak and healthy conditions were discriminated using the two-sample KS test, and a pipeline leak indicator (PLI) was obtained. The experimental results demonstrate that the developed PLI accurately distinguishes the leak and no-leak conditions without any prior leak information and it performs better than the traditional features such as mean, variance, RMS, and kurtosis

    A novel framework for centrifugal pump fault diagnosis by selecting fault characteristic coefficients of Walsh transform and cosine linear discriminant analysis.

    Get PDF
    In this paper, we propose a three-stage lightweight framework for centrifugal pump fault diagnosis. First, the centrifugal pump vibration signatures are fast transformed using a Walsh transform, and Walsh spectra are obtained. To overcome the hefty noise produced by macro-structural vibration, the proposed method selects the fault characteristic coefficients of the Walsh spectrum. In the second stage, statistical features in the time and Walsh spectrum domain are extracted from the selected fault characteristic coefficients of the Walsh transform. These extracted raw statistical features result in a hybrid high-dimensional space. Not all these extracted features help illustrate the condition of the centrifugal pump. To overcome this issue, novel cosine linear discriminant analysis is introduced in the third stage. Cosine linear discriminant analysis is a dimensionality reduction technique which selects similar interclass features and adds them to the illustrative feature pool, which contains key discriminant features that represent the condition of the centrifugal pump. To achieve maximum between-class separation, linear discriminant analysis is then applied to the illustrative feature pool. This combination of illustrative feature pool creation and linear discriminant analysis forms the proposed application of cosine linear discriminant analysis. The reduced discriminant feature set obtained from cosine linear discriminant analysis is then given as an input to the K-nearest neighbor classifier for classification. The classification results obtained from the proposed method outperform the previously presented state-of-the-art methods in terms of fault classification accuracy

    Sediment quality, elemental bioaccumulation and antimicrobial properties of mangroves of Indian Sundarban

    No full text

    Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals

    No full text
    corecore